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Abstract

Using the linearised theory of general relativity the gravitationally radiated angular and
linear momenta from a galactic model of N gravitational radiators is calculated. The
results are presented in terms of the lowest order contributing multipole moments
(guadrupole), the orientations of the radiators about a common reference frame, the
distances between pairs of radiators and the frequency of each radiator. This work is a
continuation of an earlier work in which the galactic model was first proposed and its
gravitationally radiated energy flux was computed.

1. Introduction

In an earlier paper by the present author (Booth, 1973} a Galactic Model
was proposed and its gravitationally radiated power flux was computed in terms
of the quadrupole moments of the individual galactic sources and their mutual
separations. In this work the model is taken a stage further and the gravitationally
radiated angular and linear momenta fluxes are computed—again in terms of
the quadrupole moments of the galactic sources and their mutual separations.

The gravitationally radiated angular momentum emitted by a pair of sources
has been previously found by Booth, Cooperstock & Rumsey (1972) but, as
in the case of the previous work on power emission, the restricted orientation
imposed on the separation of the sources prevents a galactic model being
constructed from arbitrarily orientated sources and so the problem is here
reworked without restriction on source orientation.

Whereas a single isolated source will only radiate linear momentum flux, at
the lowest multipole order, through the quadrupole-octupole mode (Bonnor
& Rotenberg, 1961, 1965; Papapetrou, 1962; Peres, 1962) it has been shown
by Cooperstock & Booth (1969b) that quadrupole~quadrupole linear
momentum flux does exist for pairs of sources as a consequence of their
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mutual interaction. Again this work was performed under the imposition of
restrictive source orientations and, as the energy and angular-momentum
formiations had to be reworked, so is the linear momentum formulation.

2. Angular Momentum Conservation

In special relativity the energy-momentum tensor T,j for a material stress-
energy distribution has a vanishing divergence

T/ ;=0 .1

and consequently readily lends itself to integral conservation laws of energy
and momentum. However, in the theory of general relativity the covariant
generalisation of equation (2.1} is the vanishing covariant divergence

T ——\—/—(-—-—) VDT j = imi T™ =0 2
which does not readily lend itself to integral conservation laws. The reason
being that there is now a gravitational field contribution to the energy and
momentum which is not contained in the energy-momentum tensor 77. To
include the gravitational field as well as the stress-energy distribution in
generalised concepts of energy and momentum conservation, pseudotensorial
quantities 7,/ are constructed from the field variables in such a manner that
these auxiliary quanties, together with the energy-momentum tensor T/, have
a vanishing divergence in like manner to equation (2.1). This construction,
which can be achieved in an infinite number of ways, was performed by
Landau & Lifshitz (1965) who were able to develop an expression for the
gravitational field energy-momentum pseudotensor ¢/ which contains first
and no higher derivatives of the metric tensor gj; (MqSller 1966) and which,
moreover, is symmetric making it possible to deﬁne a conserved angular
momentum for the material distribution plus the gravitational field in a
natural manner. .

The Landau-Lifshitz pseudotensor ¢¥ satisfies the equation

()T +1)=h", (2.3)

wheret
W = ” {(-2)E"g" - "¢} m 24)

clearly
W ;=0 ‘ 2.5)

so that the four-momentum for the matter plus the gravitational field
.1 " ..
Pi= " J(_g)(T” +17) dS; (2.6)

+ The system of coordinates is chosen so that gz ~ diag (—1, 1, 1, 1) asr— o=,
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satisfies the conservation laws
p t,i =0 (27)

The generalised angular momentum tensor.#” is defined in terms of the
generalised four-momentum density as

LY = I(xi dP! — x! dP?)
1 ;. .
== f ™, — XTHT ) dSy (2.8)

Angular momentum conservation can be expressed by the condition that the
angular momentum density has a vanishing divergence

flpltm | —xlgm 1 ,=0 (29
Hence, choosing the hypersurface x° = constant for the integration in equation
(2.8) it is readily shown that the radiated angular momentum flux is given by?
L s .
T = - § (=) X1t Yn, dS (2.10)
s

where the surface § bounds the volume containing the material distribution
and is chosen sufficiently remote enough to make the material stress-energy
tensor vanish on S.

The angular momentum flux emitted by a single isolated source has been
found previously to be given by the expression (Morgan & Peres, 1963; Peters,
1969; Cooperstock & Booth, 1969a)

4e® E&ﬁydgﬁaf 2G .. ...
R R R L 10
where
D% = g% _ L5 g (2.12)

is the quadrupole moment of the source andi (Papapetrou, 1962; Booth, 1973)
d% = [T g3 (2.13)

3. Interaction Angular Momentum

Using Einstein’s linearised metric the Landau-Lifshitz pseudotensor can be
written in the form§ (Cooperstock & Booth, 1969a)

(-t = (—g)s" +¢T o (3.1)

T ng is the outward drawn normal to .
t xlisa fgfld variable and £ is a source variable.
8 Where(g;]‘ =diag(-1,1,1,1) .(g)% does not contribute to equation (2.10).
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where
4

167G

‘°’tl(°) in ymp QIO Lin gm
\I’] qf p g,gmn\p ,p\y p,l

(_g) Si}' = {\I,i}il\plm'm _ ‘I’i{l‘yjm,m

O @ @ © OOy
+%(2gnpgqr gpqgnr)gl g ,I‘I,pq,m

+ G PV TIm ) (3.2)

and where
4G ; av
=C—4J\Ti](t-R/c)‘é* (3.3}

are retarded potential solutions to Einstein’s linearised field equations.

The galactic model consists ef a material distribution of N gravitational
radiatorst (Booth, 1973) and if x}/,’ denotes the field of the nth radiator, the
total field is given as

. N om,
vi= 3§/ G4

n=1

From equations (3.1), (3.2) and (3.4) it can be seen that equation (2.10)
consists of two types of integral; one type containing terms quadratic in the
field of a given radiator and the other containing products of fields of pairs
of radiators. The sum of all integrals of the former type yields the angular
momentum loss of the radiators in the absence of interaction and the latter
integrals yield the interaction angular momentum flux between pairs of
radiators.

As in the calculation of the galactic power loss (Booth, 1973) the retarded
potential field solutions of Einstein’s linearised field equations must be
expanded about the retarded time ¢ — 7/c to yield

01=2 [+ BT +46 - RPTe +- 1% G5)
where
T9=T9(t —Flc) (3.6)
The geometrical arrangement is illustrated in Fig. 1.

It should at this stage be mentioned that whereas in the galactlc power loss
calculation the wave functions were only expanded up to order r~*, here they

+ The word ‘radiator’ is used throughout fo denote a stress-energy distribution.
% A bar over quantities implies a specific radiator, except where otherwise stated,
i.e. equation (3.24) et seq.
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Figure 1.

must be expanded up to order r~2 as the numerator of the integrand of equation
(2.10) is of order #3, The contribution to the angular momentum flux will
then arise from the terms of order »~2 in the wave function products—the
terms of order r~2 vanishing, as they must, in order that the integral will
converge as.S = oo,

Now,

R? = (@ - £?
- ’—_2 _ 23-?0!%70[ + gaé‘a (37)
where £ are spatial source variables and R is the source point to field point

distance.
Hence,

- R)=i,F - g; FE — (7, E) + O

1 1 m,E® 3
== —+ + .
R 7 P oF™) (3.8)

Substitution of equations (3.7) and (3.8) into equation (3.5) yields

- 4G [ .. - I _
Ve -7/ = a f (T + 7T 0 + 376E T g0 + - - 1 %
4G Vi 4 5 Eai7if 1o oz 3F
tg | (VT 4 8%V7 g + 57 E*V oo + - - -} d 7k
cr (3.9)

where

vi= ﬁagajv‘ij _ %(é‘aga _ {ﬁa goz]Z)fi{O (3.10)
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Equations (3.9) and (3.10) in conjunction with Booth (1973) give the
following field components to quadrupole order as,

- 2G -
V(@ —e)= e d* oo

_ 26 e - 26 s
d/ao(f —?'/C)z E’:daﬁ’oonﬁ +;;;§*d°‘§,gn5
_ 26—, _ _ 26 - .. _ _ .
POt —7le) = o d®® gofinitg + Kl (3d% giigity —d" o} (3.11)
where
d*® =d%( — ilc) (3.12)

Equations (3.11) give a radiator field expanded about a retarded time relative
to its own centre of mass and since we have a number of radiators it will
eventually be necessary to expand the field of each about a common retarded
time ¢ — r/c. Meanwhile, from Fig. 2 it is seen that, for asymptotic fields,
since

Fer L (3.13)
then
- =rm{1 HznaE“+L“°‘f°‘ m (3.14)
H ¥
and
=Leont @l -D+067) (3.15)

Figure 2.
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Using equations (3.13) to (3.15) equations (3.11) can be expanded about the
retarded time ¢ — r/c + n,L%/c to yieldt

g 2G - 26 | — . d
g = a d® g0 + a2 ( d* gony LY +

~op

9000 1y nsDYL® — VI
2 v

1,00

i

26 + 26 [ - o
;z;daﬁ’oonﬁ t a3 (Zdaﬁ,o()ngnyL'y 3% 0 LB + 3% g

d*® 900 Y FE Ty
+ 2 nglnyns LYL° — LYL"]

5026 7os
c4r

+ 3&“3’0?’2&}213 - Eaﬁ’gg(nafjﬁ + nﬁl_:"‘)

___z__‘?aﬂ 000 FYFS Y[ '
+ 3 ngnglnyns LYL® — LYLY] (3.16)
The derivatives of these wave functions (which are listed in Appendix A) are
then combined with equations (2.10), (3.1) and (3.2) to yield the time-
averaged interaction angular momentum flux between the pth and gth
radiators as

. -G ) ®) @)
($°‘ﬁpq) e J {( d M’ 000hq —d W,ooon,e)(w ¢p,00”p
A

9 @ 3 @ @ @ (1)
— ‘i‘ dpo’ooﬂqﬂ’lp Hy t+ 7(2’09,00}1@5 + LT L7 d@r,oo()

(R)pa (g)pﬂ' (‘1)q>
+d ,Oool’l(pnﬂnpng +d ,Qoondjnp —d p’oool’lpl’ln}) dQ)

G ) @ (p)
by {( d B¢,000na —-d wp,ooo"m) (3d o ,001,
an

9w - 3(1') @ (€] (€]
— -2‘d‘o 001l T jd’o’o’ogﬂ(p + LT — LT ddm’goo

(p)pa (p)p - i» o
+d7° goonghanpng +d°7 goongn, — A% goonphy| | dS2

+ The delay at this stage in not expanding about ¢ — r/c is for computational ease
only.

24
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G (p)6 @ 6 @, @, [0} @ .
—~ Y (no{L + L il - I’lﬁ[l; + L ]) ( {dpp oood ,000
4

(437 ) o
2o ooodp 000 — [dpp oood¢ 000 +4%" 000d"” 000

(») @ (r) (@
— 4d"® 400d " ooo] iy — AP 000d®" oot plioNeh })} dQ

(3.17)
where ,
dQ=r"2ds (3.18)
and
) )
d*¥= d“ﬁ( r/e +_I_,.§/c) i=p,gq (3.19)

Taking the 7th radiator to be periodic (Booth, 1973) with frequency &3, then

d“ﬁ Re {A"‘ﬁ exp z[ (t —¥le +i) n/c) +'y]} (3.20)

where f(li)“ﬁ is a complex amplitude and Yisa phase angle, Thus

and 4% = Re ¢ (3.21)

27)2‘5(: —r/e +2.Lz/c) = (cosic’._;g +isin (Ijéﬂ) deb(t —rjc) (3.22)
where
“ i) (i)

k=wlje (3.23)

When equations (3.20) to (3.23) are substituted into (3.17) for the pth and
gth radiators, a typical product in the integrand of equation (3.17) then
becomes.

) @ ) @ w @ » @

d°* ~000d U {d 2 5004 000 ~ d* 000d™® 000 } cos [(7_‘ + k) _]
(p)o:{i (q)y B "7)78
d** o00d ™ 000 + d 0004 7" 000 § COS
{d b oood 8 000 + 7 oood v ooo} sin {

i) @ (P)
1% 5
+7{d 8 500d ™ 000 —d 30006{7 ,000

[——
w
£
=
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where, on the right-hand side of equation (3.25)

@)

d%¥ = d“ﬁ(z‘ rfc) ,
i=p,q (3.25)

3“‘3 = ?i)"‘ﬁ(t — /e +m[26)
To facilitate the computation of equation (3.17)
D
Prq =k +k=ppgh
®» @ (326)

and defined, where # and *# are fixed unit vectors which specify the orienta-
tion of 0, and Oy relative to the common origin 0.}
From equations (3.26) it is seen that
Ppq- 1= Ppglialle
*Ppq- 1 = *ppq*fiala

In order to evaluate the integral of equation (3,17) it is required to evaluate
integrals of the form

(3.27)

J' Mo My - - - Moy €XP (Pes11s) A2 (3.28)
dar

and a detailed discussion of this integral is located in Appendix B. Equations
(B.3.1) to (B.3.5), (3.20), (3.24), (3.25), (3.27) combined with equation (3.17)
yield the time-averaged interaction angular momentum flux between the pth
and gth radiators to quadrupole-quadrupole order as3

G {{® Do w @ @) @
gaﬁ 0) = — a {(dﬁé d 000 — doaﬁ’ qFe 000 — ase Oodw

(Y @

+d*? 5od @,ooo) - (Sin Ppq [—0pg +3Pp3 — 30pa]

» @

+ €08 Ppg [—20p8 + 3ppg ) + (dﬁ¢ oodo@ooo d*® 00d®® 500

6] @ @

"'dwoad %ao—d q’ocdﬁq> 000) - (Sin *ppg [~ *pps + 3%

= w
~3%ppg] €08 *ppg [—2%pp +3%ppa]) + (d% 004" 000

1 Op and Og are the centres of mass of the pth and gth radiators respectively.

i (2 oB ) could be evaluated to higher multiple order by retention of higher order
terms in equauon (3.9).
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The total interaction angular momentum flux from a galaxy of NV such
radiators is then

. N .
(12%)=% 3 (2% (3.30)
p,q=1
p#yq
If, in equation (3.29) the limit is taken as ppg = 0 and *pp, = 0, then
4G (@ @ (€2} (€3
Lim (#*° pq>-“" {dmood ** 000 *dmoad&’cooJ (3:31)
2 N ,
*Ppq

letting p = g in equation (3.31) yields twice the angular momentum flux from
the pth radiator in the absence of interaction (Cooperstock & Booth, 1969a).
Consequently, the total angular momentum loss rate for this galactic model is

N
(i Z%=% 3 (&%) (3.32)
p,q=1
where
(£°6,0= Lim (£%,) (333)
Ppq >0
“Ppg p=q

Equation (3.29) is fully consistent with earlier work by Booth ez al. (1972)
in which stress-energy distributions were restricted to have their centres of
mass lying on the common z-axes.
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4, Interaction Linear Momentum Flux

If i is set equal to A(A = 1, 2, 3) in equation (2.6) and the integration is
performed over the hypersurface x9 = constant,an application of the Gauss
theorem yields the total linear momentum flux (Cooperstock & Booth,
1969b)

Py =~ § (~g)1Pneds (4.1)
s
where S is the surface bounding the radiator-pair volume, This is in complete
analogy with the energy loss-rate of Booth (1973). As in Section 3, equations
(3.1), (3.2) and (3 .4) allow the division
Py =pPy 4 oPx +intfr 4.2

where , Py and qPy are the linear momentum fluxes from the radiator-pair
in the absence of interaction and ,mP;\ is the flux which arises from their
interaction. It is of interest to note that

pPr = PA=0 4.3)

to quadrupole-quadrupole order (Bonnor & Rotenburg, 1961, 1965;
Papapetrou, 1962; Peres, 1962). However, to this order ;,, Py # 0 and it is this
term which is now derived.

Proceeding as in Section 3, equations (3.1), (3.2), (3.16) and (3.24) com-
bined with (4.1) and (4.2) yield

. G ) @)
a— fe
intfx = 7606 {D 000D 000714y ab 70001) poy 000"
4ar
)

+2D% oooD O“5000} 1, dSl (4.4
to lowest multiple order. The integration of equation (4.4) proceeds in an
analogous manner to the power flux calculation of Booth (1973). Equations

(B.3.1) to (B.3.5) with equation (4.4) yield the linear momentum flux
between the pth and gth radiators as

intP = gg‘g {(DO‘B 000%”5 000 + bes oooD'y 000)%”1[3 NEYON
(c08 ppg [—ppg + 105053 — 945p,3] +sin pp, [15p,2 — 420p,2
+945p,87) + ( oooD? ,000 ~ bt 000D7 ooo) g FAg FR g iy,
(COS *ppg [~*ppa + 105%p 3 — 945%p 5] + 5in *ppy [15%ppe
— 420%ppd + 945%p ET) + (D i 000D67 000 b oooDﬁ'y ooo) AaRighiy

25
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(008 Ppg [4p g — 100p,2 +420p 53] + sin ppg [—28pp2 + 240p 57

@)

—420p,5]) + (D 4 eoaDB" 000 — il 000D"7 ooo) *ho *Ag* Ay

(c08 *ppy [4%ppd — 100% 0,3 + 420%p 7] + sin *ppg [—28%p,7

@
+240%p 8 — 420%p,20) + (DO‘B 000D ,000 +D 000D ooo)"a

(008 ppq [~20p5 + 205 —30ppg] +5in ppg [2070 — 12057 +30p,5T)
@ @ e @
+ (Daﬂ,aooDaB,ooo - Daﬁ,oooDaﬁ,ooo) iy
(008 *ppg [—2%0pg +2%pps — 30%p,0] +sin *ppg [2%0pe — 12%p,d
¢ @ @ @

+30%p,87) + (Da » 000D ,000 "”Da 000D 000 + DTS 000D

L§:2]

+DY oooDa 000) Aoy fts . (€08 ppg [—20pp, +210pp ]

@

+ i ppg [~ 2052 +90ppg — 2100,8]) + (D“"‘OOOD"

(p)a @) {3 5 @ o (p)’y (T3] A
fa wn
— D" 400D7® 000 + D 500D** 500 ~ D" gp0D" 000) *My *s Fhyy

(co8 *ppg [~ 20%pp2 + 210%p 2] +sin *pp [—2 sz +90%p,0

(T3] (@) [£2)
—210%p2]) + (D 0000 000 + Do * 006D goo + D OOGDM 000)

6]

+D*Y oooD A 0007y . (608 ppg [16p55 ~ 60ppa] +sin ppg [40pe

@ (ll)

(P)
~ 36ppg +60ppe]) + ( * 0000 000 _ Do 0000% 000

03] @ @

+D* 500D 500 b *Y 500D 000) (cos #ppq [16%p 50 — 60%p 2]

+in *pp, [4%p e — 36%p,0 + so*p,;g])} 4.5)
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where
) @)
D =Dt —1/c)

L0 @) i= P.q (46)
D™ =Dt —rfc + 7/283)

This then gives the total linear momentum loss rate for the galaxy as a whole
as

. N .
totP PN % Z qu A (4-7)
b,g=1

where
opPr =0 (4.8)

to quadrupole-quadrupole order.

5. Discussion

Whilst the present-day arena of gravitational radiation experiments is
primarily concerned with the pure detection of energy-momentum carrying
gravitational waves in order to confirm or deny Professor Weber’s results
(Weber, 1969, 1971), a time will surely come when technology will enable a
more critical analysis of received signals, It is for this reason that the work
in this paper and its predecessor was performed. It is hoped, at a later date,
to complete this work with some numerical calculations based on current
astrophysical data with the desire to present an idea of the orders of magnitude
to be expected from specific galactic models.

Appendix A

In this appendix the spatial derivatives of the wave functions listed in
equation (3.16) are given.

- 26 . 2G | - 7 7 A
Yol o {d* goony} ] {2(1&6,000’17”8145 ~d% 000L"

- des U
+d% jon., +—22%9 (ngn LOL" — [O[% (A1
s b 2 y\ig

— 2G . 2G = _
Y0, = a; {d* goongny} — e {3d° yoongnynsL®

— (iaﬂ,ooo(ﬂ,},fﬁ + nﬁl?’) + 350‘]3,00”5”7 — 3“7,00
+ %Eaﬁoooonﬁnﬂy(nqﬂ"]—]pfw — Z¢E¢)} (A.Z)
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- ZG G _
v, =— A {d * 007aMgMy} —az {4d “‘iooOrzaan,ynaL‘S

—d* oog(ﬂ?nazﬁ +nyngl® + nongl™)
+ 6d Ol’laﬂﬁn,-), — 2d ’Ygol’l —_ d On7
+3d% yo00nanghy (en LOL™ — L?L?)} (A3)

The time derivatives follow immediately from equation (3.16).

Appendix B

B.1. Averaging Products of Components of a Unit Vector
The integrals to be considered are those of the type

1 .
i J Ny, A, - - - Moy, €XD T (Pes7g, ) AS2 (B.1.1)

where
dQ=r"%ds (B.1.2)

where § is the unit sphere in 3-space with centre at the origin, m is any integer
>0 and (14, ny, n13) is the outward directed unit vector normal to S.
Write

P=(p1,p2,P3)= p(fiy, An, Ai3) (B.1.3)
where
n.a=1 (B.1.4)
The work considered in this appendix is an extension of that done previously
by the present author (Booth 1970) where the following identity was usedf

j‘(doe )P dQ = g df);; (B.1.5)

where p is any integer >G.

An analogous identity exists for integrals of the form (B.1.1) and the aim
-of the present work is, by use of this identity, to give a general expression
which enables integrals of this form to be more readily evaluated when m is
large and where the specific distribution of the normal components n,, 14, 113
amongst the 7y, . . . My, in the integrand of (B.1.1) is not known.

Clearly

é Mo, Moy - - - Ny, €XP 1 (p,71,) AL = (—iymcm™ (B.1.6)
4n

+ This identity is quite easily proved by letting d be in the positive z-direction and
using spherical polar coordinates.
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where

am

cm - M-_._{ ! f exp i (b1, dQ} (B.1.7)
apam

3

and

sin p

1
——fexpf(pwnw)d§2= (B.L.8)
47

4%

B.2. The General Expression for C*

Instead of performing m differentiations to evaluate C an alternative
procedure is given by the following expressiont,

C™ =D iy Ay ..

L7}
m m-—2r
pm=r ) ,
+ Z{ pr . H n(CiSH 50‘m+1—2t,°‘m+2-—2f)} (B.Z.l)
r=1 »=0 =1 J
where
D sin(p + m“ﬂ)
m
sin (p + m ¥ raf2) s
+Z { PR I—_([(kzlk - Z p)} (82.2)
¥=1
and §
ﬁae= 1
m=m/f2 if m is even (B23)

=(m-—1)2 if m is odd.

B.3. List of Integrals
Using equation (B.1.6) or (B.2.1) the following integrals can be obtained
m=1:

cosp sinp

~——fn expz(pwnw)d§2=—l( P -——7—)1’1& (B.3.1)

o

+ The general expression for C ") was derived by inspection for m = 1, 2, 3, ete.,
and the form deduced for the general case.

} The parentheses around the subscripts in (B.2.1} define the tensor symmetrisation
procedure Wthh involves all possible permutations of subscripts within the parentheses,
e.g. 8(up) = i of + 8 g} See footnote below,

§ Fig, is thus defined to enable the general expression to be written in the most elegant
form. Note that before performing the symmetrisation procedure in (B.2.1) we put ”a =1
and then symmetrise with respect to the remaining subscripts.
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m=72:

1 ;
. j nohg €XP I (peyne,) A2
an

cosp sinp sinp 3cosp 3sinp
= | e — = | § 0 + + — Ayl B3.2
(pz ps)aﬁ (p 2 pE )aﬁ (B3.2)

m=3:

1
@J‘n"‘nﬁnV exXp i (PeoHes) A2

4
[ sinp 3cosp+351np 2 s
=i[— - A
92 p3 p4 @8y
0s 6 sin 15 cos 15 sin
pi| SBR 2SR O ORR P g, (B3.3)
p p o o

1
-— fnanﬁn,yns exp i (0, M) dS2
‘i

4z

sinp 3cosp 3sinp
= f — + 8 (080 &
( ps p4 0° ) (@B9~8)

cosp 6 .
= 2 t—3 T — 5 ) Aaligbys)

sinp+1SCosp 15sin p) |
P p P

sinp 10cosp 45sinp 105cosp 105sin p)
+ + — — + Agfigh. s (B34
( 0 pz pa p4 ps altpfiytts ( )
m=5:
1 .

Nolgho RgNy €Xp i (py,ng,) dS2

4

6 sin co 5 sin
=l,(“cosp+ si p+15 Sp_‘l in p

A0 g0
pa p4 ps ps ) (@9pyC8m)

fsinp 10cosp 45sinp 105cosp 105sin p) ) .
+1i + — - + ARy b5
02 PE o PE 0° (@™pltyObm)

2 3

fcosp 15sinp 105cosp 420sinp 945cosp 945sinp
+i - — + — + z e
p P p P P P

X fio Agh s fi (B.3.5)
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